Removal of Arsenic from Water Using Aluminum Nanoparticles Synthesized through Arc Discharge Method

Authors

  • Hanieh Fakhri Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-4383 Tehran, I.R. IRAN
  • Maryam Mirabedini Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-4383 Tehran, I.R. IRAN
  • Mohamadzaman Kassaee Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-4383 Tehran, I.R. IRAN
  • Samira Poorsadeghi Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-4383 Tehran, I.R. IRAN
Abstract:

The present study describes a novel procedure for As (V) removal from water using pure Al nanoparticles (AlNps) prepared by arc discharge technique. Some spectroscopic and microscopic techniques such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) corroborated the structure of the prepared nanoparticles. From TEM image, the average size of nanoparticles was nearly calculated 15 nm. To confirm the removal of arsenic, Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) was used. The effects of some parameters such as contact time, adsorbent dose, As (V) initial concentration, pH, and ionic strength were investigated. In optimum conditions, for a solution with the initial concentration of 30 mg/L of arsenic (V), the maximum removal (92%) took place after 3h at pH of 3. The adsorption followed the pseudo-first-order kinetic model.The equilibrium data fitted well to Langmuir adsorption isotherm which suggested monolayer adsorption. Adsorption capacity was calculated 55.5 mg/g through Langmuir isotherm which confirmed AlNps present an outstanding ability to remove As (V) not only due to a high surface area and small particle size but also because of their great inherent action.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Removal of Mercury and Arsenic Metal Pollutants from Water Using Iron Oxide Nanoparticles Synthesized from Lichen Sinensis Ramalina Extract

Background & objectives: The import of heavy metals into various sources of drinking water supply is one of the major problems of water quality, especially in industrial areas. The aim of this study was to investigate the ability of mercury and arsenic metal pollutants to be removed from aqueous solutions using green oxide nanoparticles synthesized by green method. For this purpose, the extract...

full text

Arsenic removal from water using flame-synthesized iron oxide nanoparticles with variable oxidation states.

We utilized gas-phase diffusion flame synthesis, which has potential for large-scale production of metal oxide nanoparticles, to produce iron oxide nanoparticles (IONPs) with variable oxidation states. The efficacy of these materials in removal of arsenate (As(V) ) from water was assessed. Two different flame configurations, a diffusion flame (DF) and an inverse diffusion flame (IDF), were empl...

full text

Removal of Lead from Aquatic Solution Using Synthesized Iron Nanoparticles

   Due to its ability in chemical oxidation of contaminants, iron nanoparticle is a material of choice to remove lead ions from aquatic solutions. In this study a reduction method in solution phase was applied to synthesize thenanoparticles. Afterwards, the size of the synthesized particles were confirmed by Scanning Electron Microscopy. It is worth noting that th...

full text

Arsenic Removal from Aqueous Solution Using Titanium Dioxide Nanoparticles (Anatase)

Background and Objectives: Groundwater sources, as strategic sources of water supply, are of particular importance for human beings. Arsenic is a toxic and carcinogenic contaminant that has been reported to be widely found in groundwater sources. In recent years, adsorption property of nanoparticles has been used to remove arsenic. The present study was performed with the aim of assessing the a...

full text

Arsenic Removal from Water Samples ‎Using CeO2/Fe2O3 Nanocomposite

   In the present study, CeO2/Fe2O3 nanocomposite was prepared by co-precipitation method and its application was investigated for arsenic removal from water. Characterization of the nano sized adsorbent particles was carried out using SEM and XRD techniques. Systemic adsorption experiments were performed in batch systems and the optimum conditions were obtained. The effects of p...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 36  issue 4

pages  91- 99

publication date 2017-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023